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1. INTRODUCTION \ \

I-’

Among a n t i - s ub m a r i n e  w a r f a r e  (ASW) ta rge t  m otion anal y s i s

(TMA ) al gorithm s for mobile pla t forms, passive bear ing s onl y track-

ing is the most bas ic  segment. The present  s ta te -of - the-ar t  of

t racking by this method is not sa t i s f ac to ry  [i) . None of the ex i s t i ng

extended Kalman filter al gor i thms y ield both accurate  t racks  and an

accurate solution quality indicator.  Generally, these al gorithm s

perform no better than much simpler manually controlled al go r i t hms .

Several approaches to the use of the recursive filtering theory are

discussed in references [1, ~J. The approa ches can all be refer-

enced to a basic text book E~ tended Kaiman Fi l ters .  Differences

among the algori thm s correspond to choice of coordina te  system s,

whether one aligns the l inear izat ion point of the nonlinear measurement

to the line of sight or not , whether or not one limits ar ti f ic ial  range

collapse, and whether or not one u s e s  some other form of d ivergence

control. The diff icul t ies  a re  quite well documented in re fe rence  [1].

The severity of the undesired behavior d i f fers  from al gorithm

• to algorithm. This d i f fe rence  depends on the na tu re  of the al gori thm

and the accuracy of the measurements, the rate of the measurements,

the range and data rate , and the geometric confi guration of OWN ship

and target  ship. However , the fact that none of the al gorithms generally

g ive sati sfa ctory per formance  leaves one to quest ion whether or not

the diffi culties lie with the nature  of the extended Kalman filter

which is bein g applied to thi s probl em. It is the purpose of this paper

*This work was partially supported by the Air Force Office of
Scientific Research under contract  AF-AFOSR. -44620-75-C-0023
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to point out the diffcr un ce in performance between a simp le extended

Kalman filter and an optimal Bayesian filter in pictorial form. And,

to show reasons why extended Kalman filters do not perform satis-

factorily.

The actual implementation of the Bayesian optimal filter is a

Gaussian sum approach documented in re ferences  [2 , 4, 5]. How-

ever, the purpose of this paper is not to demonstrate the utility of

the Gaussian sum approach in nonlinear filtering, but instead to show

the difference between an optimal Bayes ian  f i l ter  implemented in any

manner  whatsoever and a l i n e a r i z e d  or extended Kalman fi l ter .  It is

• hoped that the following descr i ption will g ive the reader  insi ght into

the nature of both the optimal Bayesian filter and the approximation

na ture  inherent  in any extended Kalman f i l te r .

-J
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2. PASSIVE BEARINGS ONLY TRACKING EXAMPLE

A simple two-d imens ional  ve r s ion  of the bear ings  onl y track-

ing problem is considered. The state vector is chosen to be two-

dimensional (latitude , longitude) for simplicity. The extention to

• the case of four state variables, including bearings and speed in-

formation is straight forward. Again, for simplicity, OWN ship

is assumed to be t ravel ing at a constant speed around a circular

path. Any trajectory for OWN shi ps motion could have been used.

These simnp lif ication s have been in t roduced because the purpose

of this paper is to illustrate the nature of the optimal Bayes ian  approach

to this problem and the effects of various linearization approximations,

not to solve the problem in the most expeditious manner.

Once an engineer sees the nature of an “optimal” solution to a

nonlinear f i l ter ing problem, he can often develop a simpler , but

adequate suboptimal (often a linearization type) filter.

The state vector propagate s according to the linear plant  model.

-~k+1 -~k + W k 
1

where the two-dimensional state represents  la t i tude  and long itude

coordinates.

• I~k
~~k

and the state is observed by the scalar nonlinear measurement

function:

Z
k 

= )i
k

(X
k

) 
~ 
‘k 
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-~~ -

wh e r C:

tan 
~~

‘k 
- ~~~~~~~ ~k~~~

C
k 

- C O B

wh ere 13o 
and ~ 

a r e  g iven  const an t s .  The s t a t i s t i c s  of the a pr io r i

random var iab les  
~~~~~

, V~~, ari d 
~ k 

which are white independent

Gau ssian random variables are:

E(vk
) =

~~~ 
E(w

k
) 

C) 
E(x

0
) =~~~~~~ 5

E(v
k

v
j

) =
~~~~~

6kj E(
~~k

w
~ ) =  (

~ 
6kj 

6

~~~~~~~~~~~~~~~~~~~~~~~ p ’ 7

The above model a r i s e s  in connect ion  with the t r ack ing  geomet ry  of

Figure 1, where the target T at the position defined as x~ = (x.k~ ~
‘k~

is u n d e r g o i n g  a random walk in the two d imens ional state space. The

observer  S is passivel y m ea s u r i n g  the line of si ght a as it t r av e l s  in

Figure 1. Geom etrical Definition of Vector Tracking Examp

le4



:iz;::I: I5
that when P is equal to zero the target is unobservabl e and the

f i l ter ing probl em becomes degenera te .

The problem to be considered here  is how to obtain the best

possible estimate of the state of the system (1-2) based on all

data up to time k , z k
. *

*Th e coflection of data up to time k ~z 
1’ ~~~ .. z

k} 
is defined as

5
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3. BAYESIA N RECURSION RELATIONS

Since the state vector  x
k 

is a random var iabl e, in the prob-

ab i l i s t i c  context of this  d iscuss ion, the a posteriori  densi ty  p(~~~I z
k )

• 

- 
provides the most complete desc r i ption possible of ~~~~~~. This

density is determined recurs ive ly from the Bayes ian  recurs ion

relat ions g iven below. The f i l t e r ing  densi ty is given f i r s t  and the

prediction density is next.

k , k - l
• 

p (x~ z ) c
kp(xk Iz )p(z

klx.K
) , 8

p(x I z ~~~ ) =J
- 

p(xk l I z
k l

)p(xk lx k l
)dx

k l

where the normalizing constant c
k 

is given by

1/C k~~ 
p(z

k
Jz
~~~~

) 
JR~ 

p(~~~Iz
’)p(~~~!’~~)di~~ , 10

and the initial condition for (8) is

p(x Iz~~) Ap(x ) N(y -x’,P’) 11

The densities p(z
kI
~~~
) and p(~~~J~~~~ 1

) are determined from (1)

• and (2),  and the a priori  densities p(v
k

) and p(wk l
).

2~k IX k ) N(z
k

_h,
~
(x

k
), Rk

) 12*

• p (x.l~Jx ,K l ) N(xk
_xk J , Q,K

) 13*

*

N(x -~~,A )4  
IA l ”211~~

2 exp~~~ . 5(x_x) t A l (x~~ )}
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4. THE E)~TENDED KALMA N FILTER

The non l inea r  f i l te r ing  probl em is solved when the densi ty

P(x
~~I zk

) can be obtained for all k . However , exce pt when equat ion

2 is l i nea r  and the a priori  d is t r ibut ions  are  Gauss ian , it is

generally impossible to de termine  p(x,~I z
k) in a closed form us ing

( 8 )- ( l l ) .  In the l i nea r  Gaussian case, the relations describing the condi-

ditional mean and covariance of p(x
k l ~~ are the well -known Kalman

• f ilter equations (6). The diff icul t ies  associated with the expl ic i t

• determination of the a poster iori  density have led to the devel opment

of approximate procedures  for es t imat ing the state of nonlinear

stochastic systems. The most commonly used approximation

involves the assumptions that the a priori distr ibutions are Gaussian

and that the nonlinear  system can be l inea r i zed  relative to la tes t

estimate yielding the “extended” Kalman filter which has seen wide-

spread application to nonlinear systems.

The extended Kalman filter has per formed well in many

appl icat ion s but there  are numerous examples in which unsatis-

• factory results have been obtained. Thi s has spurred the develop-
• ment of other procedures .  Most of these either implicitly or

explicitly, retain the assumption that p(x~ I z
k

) is Gaussian and

es sentially prov ide a means for modifying the mean and covariance

of the density. However, the Gaussian assumption greatly reduces

the general ity  or r ichness  of possible a poster ior i  dens i t ies  by th rowing

out all possibility of more r ealistic mnultimodal densities.

Starting at stage 0 and linearizing about a point x.~ in state

space and dropping all but the first order terms, we can solve the

Bayesian recursion relations to find:

= H~~~~) P ~~HT (~~~) + R k 
14

7
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15

= + K
k

(z
k 

- h(s)) 16

P
k = ( I _ K

k
H(x

k
) ) P ~ 17

18

~~~ 
=5

~ 
19

The various versions of the extended Kalman f i l ter  are simply dif-

• ferent  choices of X
k. The most comm on text book choice is

H(s) = Oh(x)/bx I~~~

Iterated extended Kalman f i l ters  requi re  p rocess ing  the data

through equations (14), (15), and (16) two or more times while only up-

dating x~ , starting with X
k 

equal to x . If the f i l ter  performs

in a reasonable manner this ite r ation will move toward a point

x * such that

= h(x *) 20

which is “near ” the original point ~~ in some sense. The difficulty

with l inear izat ion about a point that does not sat isf y equation (20) can

be seen from the following simple example.

Consider a case where the predicted state vector is

~, /0

8
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~tn d  the m e a s u rem e n t  equa t ion  is of the form :

z
k =~~~~

(
~~~

) + v k
_ .1

~~~~
+ (

~~~
_y

k
) + v

k 21

p(vk
) = N (v

k. . 1) 22

For this measu rement  function:

p(z~~ x.~, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 23

Using the l inearization procedure of the extended Kaix-na n f i l te r  and

l inear iz ing  about ~~~~~, i . e . ,  (0 , 0) we have:

L ?h
k

(O, ~~ 0)
hk (

~
ck~ ~~~ 

hk
(O , 0) -f + 

~~~~~~~

. __— Y~

or

hk ~‘~k’ ‘
~k~ 

= O• 1 
~k • 

- 

24

and using this to rep lace h
k in the measu remen t  density the density

• u s ed  by the Kalman filter to r epresent  equation (23) is:

PKAL (
~~k

%X k~ ~‘k~ 
= N(z

k
.. 1x ,~, .1) 25

The t rue  funct ion and this usual  approximation to it a re  shown in
Figures Za and 2b , respectively for the case when is taken equal

to one. The fact that the nonl inear ity  is quite large wi th respect to

the l i nea r

9
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t e r m  is born  out by the fact  th at  t he  l :n c ar i ~~t t i o n  about the v a lu e

of s tates  p r e d i c te d  before  the k
th 1 J 1( a s u r c i n e n t  l eads  to a ve ry

poor m e a s u r e m e n t  d e n s i t y  funct ion  a p p r odm a t i o n  and thus  to a

• • • very  poor a post e r ior i  dens i ty  func t i on  : tpproxirnat ion.

In many  cases it is p re fe rab l e if the f u n c t i o n  h
k 

can

be l inear ized  about a point  when:

zk
_ h

k
(X

k~ ~k~~~~
° 26

This reg ion is descr ibed  by the equation:

- . - - 
~~~ 

= 0 27

\vith z
k

l.

• \‘Thich is essent i~~lly a U ~~~ pt- d r eg ion  ex tend ing  to infini ty in two

direct ions.  This reg ion is shown for a l imited space in F i g u r e  Za as

• the U shaped r id ge on the t rue  rneasui  ement density .

Consider  the i t e r a t i o n  p rocedure  wh i ch picks out va lues

closest to the previous expected value or mean of the  state x~ and

satisfy ing (27). Note that all values of and such that:

~k ± 28

• ~~~~~~ 
= 

~k 
- . 05 ± ~ !Z k + . 0025 - . 05 

~ k 
29

satisfy equation (27). Using this and repla. ing  the value appearing on

the ri ght hand side of these equations by the previou s mean four

11



p o i nt s  , t r ,  f C

~k .
1 1

1 0 ~Jz

2 0

3 - . 05+~~~~~~. b O Z~~ 0

4 - . 0 5 _ % J zk + . 0 0 2 5  0

Fi gure  3. Points Sa t i s f y ing Equat ion (27 )

In l i n e a r i z i n g  the n o n l i n e a r i ty about each of these four points the

four r e s u l t i n g  f un c t i o n s  rc- uce  to two g i v in g  the two app~ c :.~iir a t ion

to p (z
k

)
~~k

) shown in Fi gu re  ac. It is seen that th is  is a considerably

bet ter  app roxima t ion  to the t r u e  fun c t i o n  than that  of Fi gure  2b , and

that  i t  mi ght be improved  s t i l l  more  by an i nc r ase  of the p red ic t ed

v a r i a n c e  of each of the Gaussians .  it should also be noted that

i te ra t in g the l inear iza t ion  to its l imit  point wi ll lead to the ri ght

or l c f t  h an d  r id ge of Fi gure  2c , wh i c h  is cc~~. s i d e r a hl y b~~ t er  I h a n

the n o n - i t e r a t e d  case but which ignores  the second r id ge completely.

An alternate approach would be to r equ i re  that the l in e a r ir a t i o n

occur at the poin t n e a r e s t  x~ s a t i s f y ing equat ion (26) .  This would

onl y be acceptable if the m e a s u r e m e n t  data was perce ived  to be more

accura te  than previou s state in fo rma t ion .

12
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5. GAu SSIA N SUM APPROACH

\~r} .1~~~f l  the l i ne a r i z a ti o n  a p p r ox i m a t i o ns  d i s cu s s e d  in the l a s t

section a re  not s a t i s f a c to r y ,  one must  r e tu r n  to the t~~~°~~~
1 B a y esi a n

recurs ion re la t ions  of section 3. It is g e n e r a l l y  not possil)]e to

solve these equations  analytically and some numer ica l  or approxi-

mation techn i que must  be used. These inc lude  the point  mass  method

of Bucy and Senn e [7], spline approximat ions  by Jan and Fi gue irado

[8] and the Gauss ian  sum methods by Aispach and Sorenson [2, 5]. A

good summary of these techniques is g iven in re fe rence  [9].

The Gaussian sum implementation is used here. However, the

example is considered more important than the methods , so that

only a brief outl ine of the m ethods is given . For a more complete

description of the approach the reader is referred to the references.

The basic approach for this problem is to appro~ hnate the

measurement dens ity  p(zk lx k ) by a weighted sum of G a u s s i a n  or a

Gauss ian  sum.

• 
p(z~ Ix~ ) = N(~~ - h(s), R~ ) 30

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~) 31

• 

i— I  

a � O  32

;h~ example in section 4, the two r id ges in Fi gure 2c could be a

tv~ ~ ierm Gauss i an  sum approximat ion to the fu: ction of Fi gure  2a.

A more detailed approximation woul d be that of Figure Zd where a

30 term Gaussian sum approximation to the function of Fi gure 2a is

used.

~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~.



G i ven  a Gau ~ ~;i an  or a G au s s i a n  sum e xp r e s s  ion for ~~~~ I z
1 — ]

)
in (~~u ,i t i~ n ( 8)  and  the Gaus  Si a n  sum ap p r ox i i i~at i o n  to  p (z~ !~~) f rom

equation (3 1) ,  one ob ta ins  an anal y t i c a l  G a u s s i a n  sum ex p r e s si o n  for
p(X
k
jz
k
) from equation (8). Equat ions  (9) and (10) ~~tn  a l so  be solved

analytically given a Gaussian sum exp re ss ion  for p(x,
~+i I z ). ThIs

can be rept~~ted to give a comp lete solution for the a pos t e r io r i

density  func t ion  based on any m e a s u r e men t  r e a l i z a t i o n .

The onl y reason  th is  approach does not lead to a t r u e  repro-

ducing dens i ty  is that the number of t e rms  in the G;~u s si a n  sum for

p(x,~ J z
k

) is  l a r g e r  than the number  in ~~~~ J~~
k l

) if no other

approximat ions  a re  in t roduced .  This is d i scussed  at l eng th in

the reference where two additional approximation s are introduced

and analyzed. The f i r s t  is that if any term in the Gaussian sum has
a v.eighting a~ of less than C it is dropped. The second approxi-
ruation is that if two terms in the sum become s im i la r  in an L

1 
sense

they are combined and their  wei gh t ing  coef f ic ien t s  (a ., a )  are
combined.

F ’
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NU~ 1ER1 CA L RESULTS

The geomet ry  of the s i t ua t i o n  is rep eated in Fi gure  4a. Then

a Gauss ian  sum approx imation  is found to approximate  the m ea s u r e men t

ment dens i ty  func t ion  p(z
k I~~~

) which can be wr i t t en  as:

2 2
p(zk I~~~

) = const exp [- . 5
~~k 

- ~~~~~ Ia]

The tru e m e a s u r e m e n t  funct ion is shown in Fi gure 4b where  it has

been as sum ed that the m e a s u r e m e n t  dens i ty  also conta ins  the infor-

mation that the probability is zero that the t a rge t  is grea te r  than 6

orb i tal radi i  away from the observer.  Thi s accounts for the sharp

cutoff seen in the fi gure. B e s i d e s  this  cutoff the major f e a t u re  of

th is  f u n c t i o n  that  d i st i n gu i s h e s  it f rom any possible one Gau s s ia n

approximation is the cone shape. This spreads  out away f rom the

• observer showing that the farther the target is from the observer

the la rger  the possibl e absolute e r r o r  in the targets  posi tion.  For

this example the additive m e a s u r e m e n t  noise has a one si gma value

• of . 1 radians or about 6 degrees.

When the b a s i c  cxt en~~ed ain~an p r o c e d u r e  is u se d  this

function, (h.k
), is l i nea r i zed  about the previous best est imate for

state. ~Then thi s linearization is performed about any point away

• 
• from the l i ne  of si ght of the la tes t  m e a s u r e m e n t  (z~ = 1 in this case)

very bad results can occu r as shown in the example of section 4.

These equations were implemented by Bucy and Senn e for this example

in refe r ence [1] and divergence occurred.  In Fi gure  4c the non-

lin earity has been l inearized about a point on the line of si ght of

the measurement and at a di stance of 3 units from the observer.

This gives the correct value for the var iance at the point about which

15
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the line arization is made, too small a value (or p o in t s  f a r t h e r  f r o m

the o b s er v e r, a n d  too l a r g e  a va lue  (or p o in t s  closer  to the o bse r v e r .

• 
• 

It can also  be seen  f r o m  Fi g u r e  4c that there  is no way to incor-

po ra t e  the c u t o f f  data  in the one Gauss i an  approximation in a s imple
- fash ion .  It is seen  that  thi s d en s i t y  f u n c t i o n  r uns  to i n f i n i t y  in both

d i r ec t i ons  in the s t a t e  space plane. Fi g u r e  4d shows a 10 G a u s s i a n

sum approx imat ion  to p (z
k lx k

) of Fig u r e  4a which is obta ined by the

methods of reference [2, 4] and in which no search was required.

This techni que is applied to a dynamic example in Fi g u r e  5

• whe re  the p os i t ion  of the obse rve r  is shown by the c ross  on the uni t

orbit and the c ross  on the d e n s i t y  f u n c t i o n  shows the t rue  p osi t ion of

the target .  The a pr ior i  est ima t e  for the initial state was taken  to

be :

• f z .\ f~. o\
~~~~~ 

~~~. z) ~~~~ ~~o i.)

• whil e the t rue  value of the initial s tate  (and all subsequent  va lues

since the re  is no plant  no i se )  was taken to be:

f 5 .\

The value of ~ on the curve  is the value of f~ ( k - I )  where  ~ is 10

d eg r e e s  and is -90 degrees .  The m e a s u r e m e n t  noise h e r e  has  a

• one si gma va lue  of . 01 r a d i a n  or about  one-half  degree .  The non-

g au s si an  a p ost e r i or i  f i l t e r ing  dens i ty  func t ion  is seen to p ropagate

f rom s tage  1 to stage 9 in this fi gu re  w h e r e  a m e a s u r e m e n t  is taken

every  10 d e g r e e s.  T h e r e  were  6 t e r m s  in each Gauss ian  SUIT) approx-i-

mat ion  to p(z
k l~~~

) in th i s  examp le and  the maxirnu rri numbe r of

17
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i erm ~ ITa any f i l t e rin g  dens i ty  v -as  117. The coinhmation and dropp ing

c r i t e r i a  were  chosen to be 6
1 

= 10

Fi gure  6 shows the e r ro r  in the es t imate  of the state f rom

the Gauss i an  sum f i l ter  of Fi gure 5 and the extended Ka lman  f ilt e r .

- In addi t ion , a d ivergence  measur ing  parameter  which should have an

average  value of 2. in a Monte Carlo experiment  is shown.

In Fi gure 7 the measuremen t  one si gma va lue  was

increased  to . 02 radians  or about one degree and a plant noise with

one si gma value o f .  1 was added.  The s tat is t ics  of the initial

est imate were changed to:

= C;) = (
Here the propagation of the distinctly non Gauss ian  f i l ter ing den s ity

from stages I to 6 is shown.

While these results  show the ability of the Gaussian  sum

approximation to calculate non Gaussian a posteriori densi t ies  in

a vector case , complete verification of these results have been

made by comparison with the considerably more expensive results

of Bucy [7] and by a Monte Carlo simulation. Plant noise  was added

- - 
to the system and the initial conditions and a priori  s ta t i s t ics  were

changed to be consis tent  with the Monte Carlo results presented in

17]. The plant and measurement noise were again white Gaussian

sequences with a 2 
= 0 .1 , = 0

0
, ~~ = 1 rad/stage, P = I, and

0.5 0 0 0.1 0. 05C 1) (0) ~~~ 
( 0. 05 0.1 

)
19
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• A M~ nt~ C a rl o  av e r a g e  of 100 r u n s  v .as p i -r f or x i w d  f i ) t c r ~ng the ~,a i r a e

samp le paths for the Gaix s Sian sum and  ex tended  K a l m an  f i l t e r s .  The

resu l ts  a r e  p r e sen t e d  in Tabl e 1. W ith the plan t  noise  added , the

inc reased  m e a s u r e me n t  noise , and the hi gher rate of rotat ion of the

- observer  in its orb i t , the ext ended Ka lman  fi l te r per formance  with

respect to the G a u s s i an  sum f i l te r  was greatl y improved. Note that

this was not t rue  of the more  bas ic  extended Ka lrn an  f i l t e r  imple-

mented by Bucy and Sex-m e [7], which was l inear ized  about the latest

estimate for state and not about the la tes t  measurement .  That

vers ion  still had severe  d ivergence  cha rac te r i s t i c s .  Tabl e I shows

the resul ts  of the f i lte red  es t imate  for 10 stages. The average  e r ro r ;

average covariance , and average  divergence  parameter  a re  present~ d.

It should be noted from the average covar iance  that the optimal

f i l t e r  cont inues to give superior per formance  even at the la ter

stages.  The d i v e r g e n ce  pa ramete r, wh i ch shoul d be such that

A E(A) = 2 for an infini te  number of run s, is consis tent ly l a rg e r
for the extan~~ed K al ma n  f i lt e r .  The l a rg e  values e:- :hibited by this

p a r a m e t e r  for some s tages  resu lt from cample path s for whi ch the

covarj ance of the extended Kairnari fil ter becomes nearly singular. It

is worth  n o t i n g  that the resu l t s  repor ted  he re  cor respond  closely
with resu l t s  obtained by Bucy and  Senne u s i n g  the method 4iescribed

in 17). This has been establ i shed in private discussions in which

both methods we re  app l ied  to the same m e a s u r e m e n t  real i zations and

a w i t h  all other assum ptions ident ical .
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Table I

- MONTE C A R L O  RESU LTS FOR F I L T E R I N G DENSITY

c~. E~~
C~~~~ al.n Sur~ E~~~~d~j  Jrr~~ ~~ u ’.-~~n ~um F.~~~: .~-d ~~~~ ~~~~~~~

- 
‘i” “ ‘‘ 

A A 
-—

o —0 134 0 074 0 007 0 172 0 499 .— Q O6J 
- 

0 319 1 035 0 0...4 0 4~a5 2 2~s 6 3 9
— 0. 036 —0.073 0 091 0.069 0. 161 0.072 0. 238 0.334 0 727 0 516 2 13 6.97

2 0.055 —0 .043 -—0 .008 0 .031 0. 070 0.027 0. 249 0.134 O. (- .9 0 .44 8 2.33 8. 57
3 0.000 0 003 ~j~yj~ ~~~~~ ~~~~ 0 057 0 262 O~~~J 0 ~yj~ ~~~~ 2 .55 2 .70

• 4 0. 035 0.04 5 — (1 Q44 0.0 10 0. 145 0 . 0S7 0. 263 0 155 ()Th C) ~~7 3. 12 3. C
5 --0 . 047 0 . (’-16 — 0 .0-i d 0. 009 0. 106 0 t - ~3 0.271 0.109 0 ( 7 6  U :~U2 2 76 3 1 7

6 0 (136 0 053 0.083 0.052 0.100 0 015 0.178 0 113 C’ 019 0. 215 2 2.5 2. 2b
7 —0.053 — 0 .011 o.oo~ —0 019 0.095 0. f~ 1 0. 211 0. 121 0. 057 0 243 2 . 72 3 5 3
8 -—0 . 036 — 0 .120 — () c~4j  — 0 163 0. 074 0.054 0. 251 0.087 0 072 0 331 2.87 11. 73
9 0. 033 —0 .048 — 0 . 031 —0 .073 0 (90 0 . 0-45 0 274 0 t~~3 0 (‘52 0. 316 2.52 2 33

10 —0 .0 12 — 0 .095 -— 0 .000 --0 .156 0. 0.31 0. 053 0 2.~ 0 (~ 5~ U ‘a~.4 C’ ~~f7 2 3C~ 2 . 27
11 0.026 0 .000 0. 020 -—0 .07 5 O. OSS 0 070 0. 327 0 . ]2~ 0j ~45 Q 4 1 ( J  2 6.3 12 . 40
12 --0. 132 -0 .050 — 0 . 007 —0. 126 0. 133 0 (-59 0~~.5O 0.147 0 V’3 (‘ 4 4 5  3 ()2 3. 13
13 — 0 .089 — 0 .003 --0 .001 —0 .024 0 . 090 0.020 0. 279 0.109 0 ( .45 u . s~~ 2.30 2 .38
14 --0 . 06~, —0 .025 — 0 .049 0.015 0.077 0 (127 0. 257 0. 093 o. o-~o 3.369 2 . 4-4 2.87
15 —0.022 —0.081 — 0 .083 —0.086 0.076 —0 . 022 0.837 0. 104 0 . 015 0.370 2 ~i- 3. 19
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